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Abstract

In this paper, a new robust controller is proposed to regulate both flexural vibrations and rigid body
motion of a hydraulically driven flexible arm. The proposed controller combines backstepping, sliding
mode, and pole placement techniques to arrive at a controller capable of dealing with a nonlinear system
with uncertainties. The sliding mode technique is used to achieve an asymptotic joint angle and vibration
regulation in the presence of payload uncertainty by providing a virtual torque input at the joint while the
backstepping technique is used to regulate the spool position of a hydraulic valve to provide the required
torque. The pole placement design methodology is applied to attain a good dynamic response by placing
the poles of the sliding plane in the desired location. It is shown that in contrary to conventional use of
sliding mode controllers, there is no chatter in the hydraulic valve which results in smoother and noiseless
operation of the system.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

One of the major obstacles that limits fast manipulation of hydraulic cranes or lightweight
robotic devices is inherent flexibility of the structure and/or hydraulic actuators. To achieve higher
stiffness, the members of the system structure have to be rigid which in turn increases inertia and
see front matter r 2004 Elsevier Ltd. All rights reserved.
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requires large actuation power. As a result, lightweight structures with special controllers are
needed for high speed manipulators.
The problem of controlling the position of a flexible manipulator while minimizing link flexural

vibration has received considerable attention in recent years, and different approaches have been
investigated. The work by Book and co-workers represents one of the earliest studies in the
control of flexible manipulators [1]. They linearized the equations of motion about a nominal
configuration and applied several linear control schemes to control flexible manipulator arms.
Linear control methods were also applied by Cannon et al. [2,3]. A variety of other control
strategies have also been proposed. Meckl and Seering [4] proposed shaped torque techniques to
minimize the residual vibrations in flexible manipulators. This technique has been developed
further to suppress multiple mode oscillations [5].
The computed torque method [6] which was originally developed for rigid manipulators was

also tried on flexible link systems. The complexity of inverse dynamics makes a straightforward
application of the computed torque method or feedback linearization impossible; instead, some
approximation schemes were proposed for open and closed-loop control [7,8]. Oakley and
Cannon [9] performed some experiments on the performance of independent joint PD control of a
two-link rigid-flexible manipulator. The sliding mode control, because of its robustness and
simplicity, has been applied to the control of rigid and flexible robot manipulators [10]. Several
artificial intelligence control methods also have been applied to flexible manipulators. Kubica and
Wang [11] developed a fuzzy control strategy for a flexible link arm, while Cheng and Wen [12]
proposed a neural network controller for flexible-link robots.
There are few studies of controlling hydraulically driven flexible manipulators. The complex

dynamics of this kind of control problem consists of the interaction of rigid body motion, beam
flexural vibration, and hydraulic actuator dynamics. Panza and Mayne [13,14] presented the
theoretical and experimental investigation of controlling a rotating flexible beam driven by a
hydraulic actuator. Their control was based on simple position feedback, along with a hydraulic
actuation system tuned to suppress beam vibration over a range of angular motion. The load-
compensated feedforward control technique was used by Kwon et al. [15] for the tracking control
of a flexible manipulator.
The control techniques (except the sliding mode control) mentioned above are not robust when

regulating the tip position of a flexible manipulator in the presence of an unknown payload and
parameter uncertainties such as stiffness, oil bulk modulus, leakages, etc. Although the sliding
mode control is robust, the chattering in the hydraulic valve spool resulting from the control
technique is detrimental to the hydraulic system and may induce higher vibrational modes in
the system.
This paper studies the robust position control of a large-size hydraulically actuated flexible

manipulator (a version of an industrial crane). A controller which utilizes backstepping [16],
sliding mode, and pole placement techniques is proposed. The general approach to design the
robust controller is: (1) the sliding mode technique is applied to achieve a virtual input torque to
the flexible arm system in the presence of payload uncertainties, (2) the pole placement is used to
attain a good transient performance by tuning the poles of the sliding plane, and (3) the
backstepping technique is adopted to attain the system actual input, namely the displacement of a
hydraulic valve spool to achieve the desired joint torque. To investigate the performance of the
proposed controller, numerical simulations are presented. It is shown that the proposed controller
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does not result in any chatter in the hydraulic valve which is the consequence of conventional use
of sliding mode controllers.
2. Dynamic formulation and problem statement

A hydraulically driven single-link flexible arm is shown in Fig. 1. l is the length of the arm and
l0; l1; a specify the location and orientation of the hydraulic actuator. There are two coordinates:
the inertial frame XOY and link-fixed frame x1Oy1: The coordinate frame x1Oy1 is attached to the
arm with x1 in the direction of the un-deformed arm. The angle between Ox1 and OX of the
inertial frame is shown by y: The deflection of the arm from its rigid body motion is indicated by
wðx; tÞ: The mass of the arm and the concentrated tip payload are denoted by m and mp;
respectively. The overall length of the hydraulic actuator and its force applied to the arm are
denoted by y and F ; respectively. The normal component of F to the arm is shown by F 0 in Fig. 1b.

2.1. Elastic deflection of the arm

In the modeling of the flexible arm, the transverse shear and rotary inertia effects are neglected
because the arm is assumed to be long and slender. This allows the use of the Bernoulli–Euler
beam theory to model the elastic behavior of the arm. Also, the arm is assumed to be stiff in the
plane normal to XOY and thus, the dominant vibration occurs in one plane ðXOY Þ: Moreover,
the arm is considered to have a constant cross-section with uniform material properties
throughout.
Using the assumed-mode method, the elastic deflection of the manipulator can be described as

wðx; tÞ ¼
Xn

i¼1

fiðxÞqiðtÞ; ð1Þ
y 1
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Fig. 1. (a) Schematic of the flexible arm; (b) actuator force.
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where fiðxÞ and qiðtÞ denote modal shape functions and modal coordinates, respectively, and n is
the number of modes used in the computation.
2.2. Dynamic model for the flexible arm

Referring to Fig. 1 and by using appropriate orthogonal conditions on the mode functions, the
kinetic ðTÞ and potential ðV Þ energy of the arm can be determined as [17,18]

T ¼ 1
2
_y
2
J þ

m

2l

Xn

i¼1

Ai _q
2
i þ

m

2l
_y
2 Xn

i¼1

Ai _q
2
i þ

m

l
_y
Xn

i¼1

Bi _qi

þ
mp

2
l2 _y

2
þ
Xn

i¼1

C2
i _q

2
i þ

_y
2 Xn

i¼1

C2
i _q

2
i þ 2l _y

Xn

i¼1

Ci _qi

 !
; ð2Þ

V ¼ 1
2

mgl sin yþ
EI

2

Xn

i¼1

Diq
2
i ;

where

Ai ¼

Z l

0

f2
i ðxÞdx; Bi ¼

Z l

0

xfiðxÞdx;

Ci ¼ fiðlÞ; Di ¼

Z l

0

d2fiðxÞ

dx2

� �2
dx: ð3Þ

In Eq. (2), J is the arm’s moment inertia about its joint axis O; and EI the arm’s flexural rigidity.
Note that the effect of flexure on the potential energy has been ignored.
Applying the Lagrange’s method, the equations of motion are obtained as

d

dt

qT

q _qj

" #
�

qT

qqj

þ
qV

qqj

¼ Rj; j ¼ 0; 1; . . . ; n; ð4Þ

where qj is the generalized coordinate, q ¼ ½y q1 . . . qn�
T; and Rj is the generalized force

corresponding to the generalized coordinate qj: The generalized forces are determined from the
virtual work dW for the hydraulic actuator force F acting on the arm at a distance l1 from the
base as shown in Fig. 1(b).
For the first generalized coordinate y; the virtual work for a virtual change is

dW 0 ¼ F dy; ð5Þ

where dy is the displacement vector of the actuator due to dy: The generalized force is then

R0 ¼
qW 0

qy
;

¼ F
qy

qy
¼ Tf ; ð6Þ
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where Tf denotes the resultant torque of the hydraulic actuator force F on the arm. The
remaining generalized forces are

Rj ¼ 0; j ¼ 1; 2; . . . ; n: ð7Þ

It should be noted that y does not introduce a new variable and as seen in the Fig. 1(a)

y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l20 � 2l1l0 cosðyþ aÞ

q
: ð8Þ

For the elastic deflection of the arm in Eq. (1), it has been shown in Ref. [19] that using the first
mode of vibration provides a satisfactory response. As a result, we shall consider only the first
flexural mode of the arm for the beam deflection, i.e., Eq. (1) becomes

wðx; tÞ ¼ f1ðxÞq1ðtÞ: ð9Þ

Since it is assumed that the beam’s length l is much greater than l1 (actuator connection), the
modes of a clamped–free beam can be considered in Eq. (9). This mode is [18]

f1ðxÞ ¼ sinðb1xÞ � sinhðb1xÞ �
sin b1l þ sinh b1l
cos b1l þ cosh b1l

ðcosðb1xÞ � coshðb1xÞÞ; ð10Þ

where b1l ¼ 1:875:
Using Eq. (4) along with Eqs. (2) and (3), the dynamic equations of the system can be described

as

M
€y

€q1

" #
þ

v0

v1

� �
¼

Tf

0

� �
; ð11Þ

where

M ¼
a0 g1
g1 a1

� �
¼

J þ mpl2 þ
m

l
A1q

2
1 þ mpC2

1q
2
1

m

l
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m

l
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m

l
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1

2
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3
75; ð12Þ
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v1

� �
¼

2_y _q1q1
m

l
A1 þ mpC2

1

� �
þ

1

2
mg cos y

EID1q1 �
_y
2
q1

m

l
A1 þ mpC2

1

� �
2
64

3
75: ð13Þ

In the following we study the dynamics of the hydraulic actuator and valve to obtain the torque
Tf in Eq. (11).

2.3. Dynamic model of the hydraulic actuator and valve

The schematic of the hydraulic servo system driving the flexible manipulator is depicted in
Fig. 2. P1 and P2 (res. Q1 and Q2) are the forward and return pressures (res. flow rates) of the
hydraulic cylinder. The supply pressure of the pump is shown by Ps; and Pr is the tank reference
pressure.
Assuming that the time constant of the servo valve motor/flapper is much smaller than those of

the mechanical parts, we can consider the spool displacement xv as the control input. The flow
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rates Q1 and Q2 are

Q1 ¼ kqg1ðP1; signðxvÞÞxv; Q2 ¼ kqg2ðP2; signðxvÞÞxv; ð14Þ

where

g1ðP1; signðxvÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps � P1

p
; xvX0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P1 � Ps

p
; xvo0;

(

g2ðP2; signðxvÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � Pr

p
; xvX0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ps � P2

p
; xvo0

(
ð15Þ

and kq is the flow gain coefficient of the servo valve.
Applying the flow continuity equations to the two sides of the cylinder and neglecting any

external leakage [20]

Q1 ¼ A1
dy

dt
þ

V1

be

_P1 þ CtmðP1 � P2Þ;

Q2 ¼ A2
dy

dt
�

V2

be

_P2 þ CtmðP1 � P2Þ; ð16Þ

where be is the effective bulk modulus, V1 and V2 are the volumes of the cylinder’s chambers and
Ctm is the coefficient of the internal leakage of the cylinder. It should be noted that V1 and V2 are
functions of y and using Eq. (8) they can be expressed as functions of y: Solving for _P1 and _P2 in
Eq. (16), the dynamics of the cylinder and its valve can be written as

_P1 ¼
be

V1ðyÞ
Q1 � A1

qy

qy
_y� CtmðP1 � P2Þ

� �
; ð17Þ

_P2 ¼
be

V2ðyÞ
A2

qy

qy
_yþ CtmðP1 � P2Þ � Q2

� �
: ð18Þ
Ps  Pr = 0

P1, Q1 P2, Q2

A1

F, yA2

xv
M

Fig. 2. Hydraulic servo system.
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The force that is applied by the actuator to the arm is simply

F ¼ P1A1 � P2A2; ð19Þ

where using Eq. (6) the torque on the arm can be calculated.
In the following, we develop a robust controller to control and regulate both the rigid body

motion and the oscillation of the flexible arm. The task of the controller is to regulate the position
of the servo valve’s spool so that the joint angular displacement y asymptotically approaches the
desired angle as close as possible, while the manipulator deflections and vibrations remain as small
as possible.
3. Controller design

The backstepping design methodology has become increasingly popular in nonlinear control
systems. The main idea of this technique is to design a controller recursively by considering some
of the state variables as ‘‘virtual controls’’. Here, we summarize the method and implement the
technique to the flexible arm.
Consider that the equations of a system are represented in the form

_x ¼ f ðxÞ þ gðxÞx; ð20aÞ

_x ¼ u; ð20bÞ

where x 2 Rn; and x 2 R are the state variables. To stabilize system of Eq. (20), we assume that x
is a virtual control input for Eq. (20a) and there exists a feedback control law for its stabilization.
If we consider the virtual input as x ¼ aðxÞ and an unbounded function VðxÞ such that

qV

qx
ð f ðxÞ þ gðxÞaðxÞÞp� W ðxÞp0: ð21Þ

Eq. (20a) is globally asymptotically stable for x ¼ 0 if W ðxÞ is positive definite.
To stabilize the overall system of Eq. (20), we assume

VaðxÞ ¼ V ðxÞ þ 1
2
ðx� aðxÞÞ2 ð22Þ

as a control Lyapunov function (CLF). In Ref. [16], it is shown that there exists a feedback
control uðx; xÞ , which renders x ¼ 0; x� aðxÞ ¼ 0 as a globally asymptotically stable equilibrium
of Eq. (20). Furthermore, if W ðxÞ is only positive semi-definite, then there exists a feedback
control law which guarantees global boundedness and convergence of ðxðtÞ xðtÞÞ to the largest
invariant set of Eq. (20). For a more comprehension discussion of the backstepping technique
please refer to Ref. [16].
The equations of the flexible arm developed in the previous section can be presented in the form

shown in Eq. (20) as the cascade of two parts: the flexible arm dynamics Eq. (11), and the
hydraulic actuator dynamics Eqs. (17) and (18). According to this arrangement, the arm dynamics
Eq. (11) are controlled by torque Tf applied by the hydraulic actuator, and the actuator dynamics
are controlled by the servo valve spool displacement xv (the actual control input). As seen in
Fig. 3, the desired rigid angle of the link yd when compared with the actual angle y; and the sliding
mode controller generates the virtual control input Tv: To generate this torque by the hydraulic
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actuator, the spool displacement xv must be controlled. This is done by the backstepping
controller for the dynamics of the hydraulic valve.
To find a feedback control law to stabilize and control the flexible arm, we assume Tv ¼ Tf as a

virtual control input and ignore the ‘‘backstepping controller’’ and ‘‘hydraulic dynamics’’ blocks
in Fig. 3 and use the sliding mode control to arrive at a control law for Tv: To stabilize and
control the arm assuming Tv as the virtual control input, any control technique can be used.
However, we use the sliding mode control since it is a powerful control approach capable of
providing robust performance for nonlinear systems with uncertainties. In the following, the
details of the controller design are discussed.

3.1. Hybrid sliding mode and backstepping controller design

In this paper, for simplicity, we consider the parametric uncertainties due to the unknown tip
payload mp and oil bulk modulus be: Other parametric uncertainties can be dealt with in the same
way if necessary.

Step 1: Rewrite the equations of flexible arm Eq. (11), and replace the torque Tf by the virtual
control input Tv

_x ¼ f ðxÞ þ gðxÞTv; ð23Þ

where

x ¼ ½x1 x2 x3 x4�
T ¼ ½y q1

_y _q1�
T;

f ðxÞ ¼ x3 x4 �M�1 v0

v1

� �� �T
" #T

;

gðxÞ ¼ 0 0 M�1 1

0

� �� �T
" #T

:

To obtain the virtual control input Tv using the sliding mode method, the error e is defined as

e ¼ x � xd ; ð24Þ
sliding
control

robust controller

hydraulic
dynamics

backstepping
controller

�d manipulator
dynamics

xv

plant

TfTv  −

 

z

+

�

Fig. 3. General structure of the proposed controller.
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where xd is the desired state of the system. The sliding plane s can be defined as

s ¼ lTe; l ¼ ½l1 1 l2 l3�T; ð25Þ

where l1; l2 and l3 are constants which will be determined using the pole placement technique to
ensure a satisfactory response for the closed-loop system of Eq. (23) [10]. In the sliding mode
method, the control input Tv is selected such that the trajectories near the sliding surface directed
toward the surface. When the system is on the surface, its dynamics is governed by the equation of
the surface. To determine the input Tv; we assume

Tv ¼ Tsu þ Ts; ð26Þ

where Tsu is for keeping the system on the surface and Ts is for directing the trajectories towards
the surface. Therefore, Ts must be zero on the surface. When the system is on the surface, we have

s ¼ 0 and _s ¼ 0 ð27Þ

and hence, assuming _xd ¼ 0;

_s ¼ lT _e ¼ lT _x ð28Þ

Substituting from Eq. (23), Eq. (28) becomes

_s ¼ lTð f ðxÞ þ gðxÞTsuÞ: ð29Þ

Solving for Tsu; and assuming nominal values for the parameters, yields

Tsu ¼ �
lTf̂ ðxÞ

lTĝðxÞ
; ð30Þ

where f̂ ðxÞ and ĝðxÞ represent f ðxÞ and gðxÞ calculated at the nominal values of the parameters.
Now to calculate Ts; we use a Lyapunov function V and choose Tv ¼ Tsu þ Ts such that _V

negative definite. The Lyapunov candidate function is considered as

V ¼ 1
2

s2; ð31Þ

where its time derivative is

_V ¼ s_s;

¼ slTð f ðxÞ þ gðxÞðTsu þ TsÞÞ

¼ sðlTð f ðxÞ þ gðxÞÞTsu þ lTgðxÞTsÞ: ð32Þ

It was shown in Eq. (29) that lTð f ðxÞ þ gðxÞÞTsu is zero if there are no uncertainties in the
parameters. However, assuming that the uncertainties are bounded, it is shown in Ref. [21] that by
assuming

Ts ¼ �k signðsÞ ð33Þ

there exists a positive switching gain k such that _V in Eq. (32) becomes negative definite which
guarantees the stability of the system. Eq. (32) using Eqs. (30) and (33) can be written as [21]

d

dt
1
2

s2
� �

¼ s_sp� Zjsj; ð34Þ

where Z is a positive constant.
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Step 2: Introducing z as a new variable defined by

z ¼ Tf � Tv ð35Þ

with the system of the arm’s equations (11), _z can be written as

_x ¼ f ðxÞ þ gðxÞðTv þ zÞ; ð36aÞ

_z ¼ _Tf � _Tv; ð36bÞ

where _Tv and _Tf using Eqs. (36a),(6),(8) and (19) are

_Tv ¼
qTv

qx

� �T
; _x ¼

qTv

qx

� �T
ð f ðxÞ þ gðxÞðTv þ zÞÞ; ð37aÞ

_Tf ¼
d

dt
F

qyðx1Þ

qx1

� �

¼
d

dt
ðP1A1 � P2A2Þ

qyðx1Þ

qx1

� �

¼ ð _P1A1 � _P2A2Þ
qyðx1Þ

qx1
þ ðP1A1 � P2A2Þ

qy2ðx1Þ

qx2
1

_x1: ð37bÞ

Substituting Eqs. (17), (18), and (23) into Eq. (37b) and then into Eq. (36b) _z becomes

_z ¼ t1ðx;P1;P2Þ þ bet2ðx;P1;P2Þ þ bexvt3ðx;P1;P2Þ �
qTv

qx

� �T
ð f ðxÞ þ gðxÞðTv þ zÞÞ; ð38Þ

where

t1ðx;P1;P2Þ ¼
q2y
qx2

1

x3ðA1P1 � A2P2Þ;

t2ðx;P1;P2Þ ¼ �
qy

qx1

A1

V1
A1

qy

qx1
x3 þ CtmðP1 � P2Þ

� �
þ

A2

V2
A2

qy

qx1
x3 þ CtmðP1 � P2Þ

� �� �
;

t3ðx;P1;P2Þ ¼
qy

qx1

A1

V1
kqg1ðP1; signðxvÞÞ þ

A2

V2
kqg2ðP2; signðxvÞÞ

� �
:

Eqs. (17), (18), and (36), with _z defined in Eq. (38) are the overall equations of the flexible arm
with hydraulic actuator. The input of the system is xv which needs to be defined to control and
stabilize the system. To obtain xv; a control Lyapunov function is chosen as

Vaðx;P1;P2;xvÞ ¼
1
2 s2 þ 1

2 z2; ð39Þ
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where its derivative is

_Va ¼ s_s þ z_z

¼ s½lTð f ðxÞ þ gðxÞTvÞ�

þ z t1 þ bet2 þ bexvt3 þ slTgðxÞ �
qTv

qx

� �T
ð f ðxÞ þ gðxÞTvÞ �

qTv

qx

� �T
gðxÞz

" #
: ð40Þ

Reconsidering the flexible arm equation (23), and neglecting small quadratic term x2
3; i.e., q21; it

can be rewritten as

_x ¼ ðf̂ ðxÞ þ f1ðxÞDf Þ þ ðĝðxÞ þ f2ðxÞDgÞTv; ð41Þ

where j1ðxÞ and j2ðX Þ are ð4� 4Þ matrices of known nonlinear functions, and Df and Dg are
ð4� 1Þ error vectors between actual and nominal values for the uncertain parameters.
Substituting Eqs. (34) and (41) into Eq. (40) results in

_Vap� Zjsj þ z t1 þ slTĝðxÞ �
qTv

qx

� �T
ðf̂ ðxÞ þ ĝðxÞTvÞ �

qTv

qx

� �T
gðxÞz

" #

þ z bet2 þ bexvt3 þ slTf2ðxÞDg �
qTv

qx

� �T
ðf1ðxÞDf þ f2ðxÞDgTvÞ

" #

¼ � Zjsj �
qTv

qx

� �T
ĝðxÞz2 þ bez t2 þ xvt3 þ w1ðxÞD1 þ w2ðxÞD2 þ

1

b̂e

w3 þ w3D3

" #
; ð42Þ

where b̂e is the nominal value of be; and

D1 ¼
Df

be

;

D2 ¼
Dg

be

;

D3 ¼
1

b̂e

�
1

be

;

w1ðxÞ ¼ �
qTv

qx

� �T
f1ðxÞ;

w2ðxÞ ¼ �
qTv

qx

� �T
f2ðxÞTv þ slTf2ðxÞ;

w3ðx;P1;P2Þ ¼ t1 þ slTĝðxÞ �
qTv

qx

� �T
ðf̂ ðxÞ þ ĝðxÞTvÞ:
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By choosing xv to be

xv ¼ �
z

t3
K1z þ tz þ

w3
b̂e

þ Z1zjw1ðxÞj
2 þ Z1zjw2ðxÞj

2 þ Z1zw
2
3 � Z2z

" #
; ð43Þ

where K1 and Zi ði ¼ 1; 2Þ are positive constants, with Z2 satisfying

be minZ2X
qTv

qx

� �T
ĝðxÞ

�����
�����: ð44Þ

Substituting Eqs. (43) into Eq. (42), we have

_Vap� Zjsj � Kz2 þ C; ð45Þ

where

K ¼ beZ2 �
qTv

qx

� �T
ĝðxÞ

 !
þ beK1X0;

C ¼ be

kD1k
2
1 þ kD2k

2
1 þ D2

3

4Z1

� �
X0: ð46Þ

The control law (43) guarantees global uniform boundedness of sðtÞ and zðtÞ and they converge
to the residual set, i.e., ðy� ydÞ; q1 with their derivatives exponentially decaying to a ball as
t ! 1 [16]. Moreover, the exponential converging rate and the size of the final tracking error can
be freely adjusted by the controller gains K and C:
4. Numerical simulation

In order to demonstrate the effectiveness of the proposed robust control strategy, numerical
simulations are performed. The flexible beam is constructed from steel which has a rectangular
hollow cross-sectional area. In order to reduce the simulation time, a saturation function satðsÞ
replaces the sign function signðsÞ in Eq. (33). This function is described as

satðsÞ ¼

1; s4�;
s

�
; ��psp�;

�1; so�;

8><
>: ð47Þ

where �40 is the boundary layer width in s: The numerical data of the system are given in Table 1.
For the simulation, we assume that the arm is expected to move from 30� to 60�; and also

assume that the nominal values of uncertain parameters are m̂p ¼ 400kg and b̂e ¼ 1:5e9:
To have a means to evaluate the controller performance, we first simulate the flexible arm

assuming a step input for the valve displacement xv: The valve is opened at t ¼ 0 and it is closed
when the joint angle of the arm y reaches 60�: Fig. 4 shows the response of the arm and it can be
seen that the joint angle yðtÞ and tip deflection wðl; tÞ have large oscillations which take more than
5 s to die out.
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Table 1

The system parameters used in the simulations

Parameter values L ðmÞ l1 ðmÞ l0 ðmÞ a ð
�
Þ EI ðNm2Þ m ðkgÞ mp ðkgÞ

Flexible manipulator parameters 10 1 1 0 1.0e8 468 0 � 600

Parameter values Ps ðN=m2Þ kq ðmÞ Ctm ðm5=NsÞ r ðkg=m3Þ A1 ðm2Þ A2 ðm2Þ be ðN=m5Þ

Hydraulic parameters 6e8 0.0063 3e�12 900 0.02 0.01 1e9 � 2e9
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Fig. 4. Simulation results with no controller. (a) Joint angle and tip deflection, (b) torque and displacement of valve

spool.
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4.1. Pole assignment

As mentioned earlier, the gains of the sliding plane in Eq. (25) are determined by the pole
placement approach. To investigate the effects of the poles locations, we choose two cases: case A,
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Fig. 5. Simulation results with the proposed controller with different pole assignment. (a) Joint angle and tip deflection,

(b) torque and displacement of valve spool.
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poles at: �5; �3� i5; and case B, poles at: �8; �5� i5: Assuming nominal payload ðmp ¼

400 kgÞ the joint angle yðtÞ; tip deflection wðl; tÞ; hydraulic actuator torque Tf ðtÞ; and the valve
spool displacement xvðtÞ are plotted in Fig. 5. As expected, case B has a faster response at higher
required torque expense. In both the cases, there are no considerable oscillations and in less than
1.5 s the response is settled at the desired location. The spool motion is smooth and there is no
chatter in the operation of the valve.

4.2. Robustness

To demonstrate the robustness of the proposed controller to parameters uncertainties, the arm
is simulated with the poles of the sliding plane at: �5;�3� i5 and system parameters at their
extreme values. Fig. 6 shows the response curves of the arm for mp ¼ 0; and 600. As seen in the
figure, although the variation in the payload is considerable, however the controller is robust and
stabilizes both cases with minimum oscillation and deflection in the arm. Also, there is no chatter
in the valve operation as a result of backstepping application in the proposed controller.
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4.3. Comparison with direct sliding mode control

To compare the performance of the proposed controller with conventional sliding mode
controllers used in hydraulic systems e.g. Ref. [22], we implement a sliding mode controller to
regulate both the rigid body and flexural vibration of the arm. Fig. 7 shows the general structure
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of this controller where the output of the sliding mode controller is the spool displacement. Using
a saturation function the same as Eq. (47) to reduce chatter in the spool displacement, and similar
parameters used in Fig. 6, the simulation results are shown in Fig. 8.
Compared to the previous simulation results, it is evident that although both controllers can

provide robust control to a hydraulically driven flexible manipulator, the proposed backstepping
controller has a better performance (less overshot, less settling time) with no chatter in the
hydraulic valve. Chatter has been one of the main issues in utilizing the sliding mode control. It
can be overcome by a backstepping augmentation as shown in Fig. 3.
5. Conclusion

In this paper, a robust controller was proposed to regulate a single-link flexible manipulator
driven by a hydraulic actuator. The backstepping technique combined with the sliding mode
method was used to control both rigid body and flexural vibration of the link. Parameter
uncertainties were considered in the development of the controller and simulation results
indicated the robustness of the controller. The stability of the controller was shown by using the
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Lyapunov method. It was also shown that when the backstepping method was combined with the
sliding mode, chatter in the control input was eliminated. This is the most important characteristic
of the proposed controller which provides a smooth and noiseless operation of the servo valve.
The extension of the approach to multi-link hydraulically driven flexible manipulators is under
investigation.
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